###########################################################################################
### Syria Mapping Example (Iterated Output, Multiple Items and Governorates with Missing) #
###########################################################################################
# DEFINE NEEDED INPUTS HERE
output_folder_path <- paste("Output/Syria/Governorate Maps/Subdistrict Vizualization")
label_variable <- "NAME_EN" # (Typically the english-language name of the spatial unit
# you merged the dataframe with the spatial data.)
region_iterator <- "ADM1_EN" #"adm1_en" # Define region variable that you map separately by.
#INPUTS ALREADY DEFINED (if ran the 01- Load Enviroment and 02 - Join Data scripts)
#df <- imported csv dataframe containing data to be mapped
#df_key <- vartiable in csv used as key to join spaital layer with csv
#spatial_layer <- spatial layer (must have already been joined with csv data)
#spatial_key <- vartiable in spatial layer used as key to join spaital layer with csv
####SPECIAL NOTE####
# Columns in all HDX syria spatial data for governorate-level pcodes and names are
# the same EXCEPT FOR the syr_admin1 dataset. So this needs to be renamed to match
# the other column names.
syr_admin1[[region_iterator]] <- syr_admin1$NAME_EN
# Below this Line should not need to touch #
############################################
# Load 'tmap' Library if not already done.
library(tmap)
# Set list of variables to map (all but key in original dataframe)
var_list <- names(df)[names(df) != df_key]
#Select Regions to Map Separately (all govenrorates with data)
region_list <- list_spdf_regions_with_data(spatial_dataframe = spatial_layer,
source_dataframe = df,
spatial_key = spatial_key,
df_key = df_key,
region_to_subset_by = region_iterator)
# Define Background Map for Governorate
background_map_syria_subregion <- function(subregion_column_name,subregion_value){
admin1 <- tm_shape(shp = syr_admin1[syr_admin1[[subregion_column_name]] == subregion_value, ], is.master = TRUE) + tm_borders(lwd = 2)
admin3 <- tm_shape(shp = syr_admin3[syr_admin3[[subregion_column_name]] == subregion_value, ]) + tm_borders(lwd = .5)
background_map <- admin1 + admin3
background_map
}
#################################################################
# Create Output Maps Iterating by Governorate and then per item #
#################################################################
# For every entry in region_list (referred to as 'i' below), this function will
# create a subfolder for that governorate, create a background map for that
# governorate, and then start an apply function that will create and save maps
# for each item in var_list.
lapply(region_list, function(i){
#Create Output Folder Path for Governorate
dir.create(paste(output_folder_path,"/",i, sep = ""),
recursive = TRUE)
#Create Background Map for Governorate
background_map <- background_map_syria_subregion(subregion_column_name = region_iterator,
subregion_value = i)
##Create List of subdistricts in original dataframe
sbd_list <- list_spdf_regions_with_data(spatial_dataframe = spatial_layer[spatial_layer@data[[region_iterator]] == i, ],
spatial_key = spatial_key,
source_dataframe = df,
df_key = df_key,
region_to_subset_by = "NAME_EN")
# For every entry in var_list (referred to as 'x' below), this function will create
# a map layer visualizing the data for a particular subregion with labels, layer this on top of the background map, and
# then save the output.
lapply(var_list, function(x){
###Create Community Layer
sbd_layer <- try(tm_shape(shp = spatial_layer[spatial_layer@data[[region_iterator]] == i &
spatial_layer@data[[label_variable]] %in% sbd_list, ]) +
tm_fill(col = "gray70", size = .15))
#This function maps a subgregion, with data displayed as points (as they are attached to communities)
data_layer <- try(fill_map_subregion(spatial_dataframe = spatial_layer,
# Selects which variable to map
mapping_variable = x,
# Specifies column name in spatial_layer where governorate is listed
subregion_column_name = region_iterator,
# Specifies governorate name that you want to map
subregion_value = i))
label_layer <- try(tm_shape(shp = spatial_layer[spatial_layer@data[[region_iterator]] == i &
spatial_layer@data[[label_variable]] %in% sbd_list, ]) +
tm_text(label_variable, col = "black", size = .6, bg.color="white", bg.alpha = .75, auto.placement = .5))
# Layer data_layer on top of background
output_map <- try(background_map + sbd_layer + data_layer + label_layer)
# Save Map to output file, at specified dimensions
try(save_tmap(tm = output_map,
#File name
filename = paste(output_folder_path,"/",i,"/",x,"_labeled_wmissing.jpg",
sep = ""),
# Specify dimensions of image here
width = 1720, height = 1020, units = "px"))
})
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.